Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7
Рис.8 Расчетная схема к примеру
Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.
С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.
Расчетная схема представлена на рис.7
Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1
Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.
Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).
В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R∑ не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z∑), полученных экспериментальным путем. Характеристики Кс = ∫(Z∑) приведены на рис. 6.
Система
Sк=100мВ•А, UН ВН=6,3 кВ.
ТС3-1000/6,0, схема соединения обмоток ∆/Y0
Sк=1000 кВ•А, UН ВН=0,4 кВ,
Uк=8%.
Сопротивления трансформатора, приведены к UН ВН=0,4 кВ, определяются по таблице 1 Приложения 1:
R1=R2=R0=1.9 мОм,
X1=X2=X0=12.65 мОм.
Шинопровод III 1
IIIМА-4-1600, длина 15м.
Удельное параметры шинопровода по данным таблицы II Приложения1
R1 уд
=0,03 мОм/м
прямая последовательность
X1 уд =0,014мОм/м
R0 уд
=0,037 мОм/м
нулевая последовательность
X0 уд =0,042мОм/м
Удельные параметры трансформатора тока по данным таблицы 14 Приложения1:
Ктт=150/5,
R1=R0=0,33 мОм,
X1=X0=0.3 мОм.
АВВГ- (3*185+1*70),
=100м.
Удельные параметры кабеля по данным таблицы 7 Приложения 1:
R1 уд
=0,208 мОм/м
прямая последовательность
X1 уд =0,063мОм/м
R0 уд
=0,989 мОм/м
нулевая последовательность
X0 уд =0,244мОм/м
Тип “Электрон” , IН =1000А.
Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ1:
Rкв= 0,25 мОм,
Хкв= 0,1 мОм.
Тип А3794С, Iн= 400А.
Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ2:
Rкв= 0,65 мОм,
Хкв= 0,17 мОм.
Все сопротивления расчетной схемы приводятся к Uбаз= 0,4 кВ.
Сопротивление системы учитывается индуктивным сопротивлением в схеме замещения прямой последовательности. По формуле (3)
Трансформатор
R1Т= R2Т= R0Т=1,9 мОм,
X1Т= X2Т= X0Т=12,65 мОм.
Сопротивление шинопровода III 1 определяем по известным удельным сопротивлениям шинопровода и его длине:
R1Ш= R2Ш= 0,03•15=0,45 мОм;
X1Ш= X2Ш= 0,014•15=0,21 мОм;
R0Ш= 0,037•15=0,555 мОм;
X0Ш= 0,042•15=0,63 мОм.
Сопротивление кабельной линии КЛ1 определяется по известным удельным сопротивлениям кабеля и его длине:
R1кл= R2кл= 0,208•100=20,8 мОм;
X1кл= X2кл= 0,063•100=6,3 мОм;
R0кл= 0,989•100=98,9 мОм;
X0кл= 0,244•100=24,4 мОм.
Схема замещения прямой ( обратной ) последовательности представлена на рис. 9, схема замещения нулевой последовательности – на рис. 10.
Рис. 9 Схема замещения прямой ( обратной ) последовательности к примеру
Рис. 10 Схема замещения нулевой последовательности к примеру
Расчет токов короткого замыкания для точки К1
Трехфазное КЗ.
Ток металлического трехфазного КЗ определяется по формуле:
По схеме замещения прямой последовательности суммарные сопротивления R1S и X1S определяем арифметическим суммированием сопротивлений до точки КЗ.
R1S = 0,33 + 1,9 + 0,45 + 0,25 = 2,93 мОм
X1S = 1,6 + 0,3 + 12,65 + 0,21 + 0,1 = 14,86 мОм
Полное суммарное сопротивление до точки К1 :
мОм
Ток трехфазного металлического КЗ :
кА
Ток трехфазного дугового КЗ определяется с использованием снижающего коэффициента КС . Кривые зависимости коэффициента КС от суммарного сопротивления до места КЗ, приведены на рисунке 6, построены для начального момента КЗ (кривая 1) и установившегося КЗ (кривая 2).
Расчеты показывают, что разница токов дуговых КЗ для разных моментов времени незначительна, примерно составляет 10%. Поэтому можно рекомендовать для практических расчетов дуговых КЗ определять ток по минимальному снижающему коэффициенту КС2 (кривая 2), полагая, что ток в процессе дугового КЗ практически не изменяется. В данном примере расчет дуговых КЗ производится с использованием обеих характеристик, т.е. определяются и КС1 и КС2
Расчет дугового трехфазного КЗ выполняется в следующем порядке :
1. Определяются значения снижающего коэффициента для начального момента КЗ (КС2) по кривым 1 и 2 рис.6.
При мОм КС1 = 0,67 КС2 = 0,58
2. Ток трехфазного дугового КЗ определяется по формуле :
= 15,27 × 0,67 = 10,23 кА tКЗ » 0
= 15,27 × 0,58 = 8,86 кА tКЗ > 0,05 с.
Ударный ток КЗ определяется по формуле :
Ударный коэффициент КУ определяется по характеристике, приведенной на рисунке 5.
Находим отношение
Этому отношению соответствует КУ = 1,6
Определяем кА
Ток металлического двухфазного КЗ определяется по формуле :
Полное суммарное сопротивление до точки К1 при двухфазном КЗ определяется по формуле :
мОм
Определяем ток двухфазного металлического КЗ
кА
проверяем кА
Расчет дугового двухфазного КЗ :
Определяем коэффициенты КС1 и КС2.
для мОм КС1 = 0,68, а КС2 = 0,6
Определяем токи двухфазного дугового КЗ
tКЗ » 0
tКЗ> 0,05 с.
Ток металлического однофазного К3 IКм(1) определяется по формуле IКм(1) =
Полное суммарное сопротивление цепи до точки К1 при однофазном К3 определяем по формуле
;
Предварительно определяем суммарные активное и индуктивное сопротивления нулевой последовательности до точки К1 из схемы замещения на рис.10.
R0∑=1,9+0,555+0,25=2,7 мОм
X0∑=12,65+0,63+0,1=13,38 мОм
Определяем полное сумарное сопротивление цепи для однофазного К3
мОм
Определяем ток однофазного металлического К3
кА
Расчет дугового однофазного К3:
Определяем коэффициенты Кс1 и Кс2.
Для =14,65 мОм Кс1=0,66 , а Кс2=0,58.
Определяем токи однофазного дугового К3
=15,66•0,66=10,33 кА tкз ≈0
=15,66•0,58=9,1 кА tкз>0,05 с
Расчет токов короткого замыкания для точки К2.
Определяем суммарные активное и индуктивное сопротивления до точки К2 в соответствии со схемой замещения на рис. 9.
R1∑=0,33+1,9+0,455+0,25+0,65+20,8=24,38 мОм
X1∑=1.6+0.3+12.65+0.21+0.1+0.17+6.3=21.33 мОм
Суммарное сопротивление
мОм
Определяем ток однофазного металлического К3
кА
Определяем токи дугового К3.
В соответствии с графиком для
мОм
Коэффициенты Кс1 и Кс2 соответственно равны 0,74 и 0,67.
Определяем токи дугового К3
=7,14•0,74=5,28 кА tкз ≈0
=7,14•0,67=4,78 кА tкз>0,05 с
Определяем ударный ток iу = Ку· ·
По отношению Ку = 1,05, тогда
iу=1,05··7,14=10,6 кА.
Для расчета двухфазного К3 в точке К2 определяем следующие величины.
Полное суммарное сопротивление до точки К3 для двухфазного К3
мОм.
Ток двухфазного металлического К3
По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.
Токи двухфазного дугового К3
=6,17•0,78=4,81 кА tкз ≈0
=6,14•0,69=4,26кА tкз>0,05 с
Однофазное К3
Для расчета однофазного К3 в точке К2 определяем следующие величины:
Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):
R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм
X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.
Полное суммарное сопротивление до места К3 при однофазном К3
Ток однофазного металлического К3
кА.
Определяем токи дугового К3
По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.
=4,04•0,82=3,31 кА tкз ≈0
=4,04•0,72=2,91кА tкз>0,05 с
Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.
Виды К3 Точка К3
|
Трехфазное К3
|
Двухфазное К3
|
Однофазное К3
|
|||||||||||||
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
iУД кА |
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
|||||||
К1 |
15,27 |
10,23 |
8,86 |
34,6 |
13,2 |
8,98 |
7,92 |
15,66 |
10,33 |
9,1 |
||||||
К2 |
7,14 |
5,28 |
4,78 |
10,6 |
6,17 |
4,81 |
4,26 |
4,04 |
3,31 |
2,91 |
||||||
Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ. Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр. 3).