Принцип действия дифференциальных защит основан на пофазном сравнении токов параллельно установленных защищаемых объектов (поперечные дифференциальные защиты) или токов до и после защищаемого объекта (продольные дифференциальные защиты).
В отличие от рассмотренных выше максимальных токовых защит (с относительной селективностью) дифференциальные защиты обладают свойством абсолютной селективности.
Дифференциальная токовая защита используется в качестве основной быстродействующей защиты трансформаторов мощностью 6,3 МВА и выше, параллельно работающих трансформаторов мощностью 4 МВ-А и выше, а также трансформаторов мощностью 1 МВ-А и выше, если токовая отсечка последних не обладает достаточной чувствительностью, а МТЗ имеет выдержку времени более одной секунды [3].
Дифференциальная защита трансформаторов имеет ряд особенностей, отличающих ее от продольных дифференциальных защит линий [2, 3, 4].
Во-первых, фазные токи до и после защищаемого трансформатора отличаются по величине уже в нормальном режиме его работы (при отсутствии повреждений в зоне действия дифференциальной защиты). Эта ситуация практически может быть разрешена предварительным выравниванием токов в плечах защиты (то есть за ТТ на сторонах ВН и НН) за счет подбора ТТ с нужными коэффициентами трансформации. Кроме того, для реализации дифференциальной защиты промышленностью выпускаются специальные реле серий РНТ и ДЗТ, содержащие уравнительные обмотки с регулируемыми числами витков для дополнительного выравнивания токов в плечах защиты.
Во-вторых, токи на сторонах ВН и НН защищаемого трансформатора могут отличаться еще и по фазам, когда способы соединения первичных и вторичных обмоток силового трансформатора не совпадают. В этом случае выравнивание вторичных токов достигается изменением способов соединения вторичных обмоток ТТ на обратное по отношению к защищаемому трансформатору (рис. 2.23).
В-третьих, при выборе тока срабатывания дифференциальной защиты необходимо обязательно учитывать бросок тока намагничивания при включении (восстановлении питания) защищаемого силового трансформатора.
В-четвертых, при отстройке тока срабатывания защиты от тока небаланса нужно учитывать две дополнительные составляющие этого тока. Первая обусловлена неполным выравниванием действия вторичных токов при подборе коэффициентов трансформации ТТ или при вынужденном выставлении округленных значений чисел витков уравнительных обмоток. Вторая составляющая вызвана наличием регулирования напряжения трансформатора под нагрузкой (РПН).
Получили распространение следующие разновидности дифференциальных защит трансформаторов: дифференциальная токовая отсечка, дифференциальная защита без торможения и дифференциальная защита с торможением [2, 3, 4].
Дифференциальная токовая отсечка выполняется на основе обычных токовых реле РТ-40, включенных без насыщающихся ТТ (рис. 2.24). Основное достоинство дифференциальной отсечки — простота и связанные с этим дешевизна и меньшая сложность при выборе уставок. Однако главный недостаток такой защиты — большой ток срабатывания — часто приводит к недостаточной чувствительности и, соответственно, невозможности использования этой разновидности дифференциальной защиты.
Дифференциальная защита без торможения на основе реле серии РНТ (РНТ-565) используется, главным образом, на трансформаторах без РПН. Упрощенная схема реле РНТ-565 представлена на рис. 2.25.
Здесь wBT — вторичная обмотка; wK3 — короткозамкнутая обмотка; wPAB — рабочая обмотка, число витков которой может быть выставлено в интервале от 8 до 35 с точностью до одного витка; wУP 1 и wУP 2 — уравнительные обмотки, для каждой из которых может быть выставлено число витков от 0 до 34 также с шагом в один виток.
Благодаря использованию в конструкции реле насыщающегося ТТ (НТТ) и короткозамкнутой обмотки удается снизить ток срабатывания защиты и повысить ее чувствительность. Схема одного из возможных вариантов исполнения дифференциальной защиты двухобмоточного трансформатора на основе реле РНТ-565 представлена на рис. 2.26.
Дифференциальную защиту с торможением на основе реле серии ДЗТ (например, ДЗТ-11) обычно устанавливают на трансформаторах с РПН. На упрощенной схеме реле ДЗТ-11 (рис. 2.27) wT — так называемая обмотка торможения, число витков которой может быть выставлено из следующего ряда: 1, 3, 5, 7, 9, 11, 13, 18, 24. Характеристики рабочей и уравнительных обмоток те же, что и для реле РНТ-565. Благодаря наличию обмотки торможения на магнитопроводе НТТ ток срабатывания защиты выбирают только по условию отстройки от броска тока намагничивания (ток небаланса не учитывают). Обычно это приводит к еще большему увеличению чувствительности защиты. Однако существуют ситуации, когда большей чувствительностью обладает все же защита на основе реле РНТ, поэтому в общем случае может быть рекомендован алгоритм выбора разновидности защиты, предполагающий проверку возможности использования каждой из трех перечисленных выше защит в том же порядке.
Расчеты дифференциальных защит двухобмоточных трансформаторов с большим диапазоном регулирования напряжения (AUj,^ % > 10 %) следует начинать со стороны ВН, так как именно на этой стороне установлено устройство РПН [4].
Ток срабатывания дифференциальной защиты отстраивается от броска тока намагничивания (для всех защит) и от тока небаланса (кроме защиты с торможением), то есть соответственно:
где kOT CP — коэффициент отстройки от броска тока намагничивания, для дифференциальной токовой отсечки kОТ СР ≈ (3,4–4), для реле типа РНТ kOT CP = 1,3, для реле ДЗТ — kOT CP = 1,5;
IHOM Т — номинальный ток трансформатора;
kЗ — коэффициент запаса, для дифференциальной токовой отсечки и для реле типа РНТ k3 = 1,3, для реле ДЗТ — k3 = 1,5;
IНБ — ток небаланса.
При наличии РПН бросок тока намагничивания рассчитывают для его (РПН) крайнего «отрицательного» положения [4]:
где ST — номинальная мощность трансформатора;
UHOM 1 — его номинальное первичное напряжение;
ΔUPПН — половина полного диапазона регулирования напряжения на стороне ВН, относительное значение.
Ток небаланса включает в себя три составляющие:
Первая обусловлена погрешностью ТТ:
Вторая составляющая тока небаланса вызвана наличием РПН:
Третья обусловлена невозможностью установки на коммутаторах реле РНТ и ДЗТ расчетных дробных чисел витков:
или неполным выравниванием токов в плечах защиты при подборе ТТ:
где wВН РАСЧ — расчетное число витков уравнительной обмотки, включенной на стороне ВН;
wВН — принятое целое число витков той же обмотки;
I2 BH и I2 HH — средние значения вторичных номинальных токов за ТТ на сторонах ВН и НН соответственно:
Здесь kCX — коэффициент, учитывающий схему включения вторичных обмоток ТТ и обмоток реле, kCX BH = √3, kCX HH = 1; kTT — коэффициенты трансформации ТТ, установленных на сторонах ВН и НН защищаемого силового трансформатора.
Определяется ток срабатывания реле для стороны ВН:
Рассчитывается и округляется в меньшую сторону число витков уравнительной обмотки на стороне ВН (первой, см. рис. 2.26):
где FCP — магнитодвижущая сила, необходимая для срабатывания реле, для реле РНТ-565 и ДЗТ-11 FCP = 100 ± 5 A витков. Рассчитывается и округляется в ближайшую сторону число витков второй уравнительной обмотки (включенной на стороне НН):
Рассчитывается коэффициент чувствительности защиты:
где IP MIN — ток в реле, соответствующий минимальному току повреждения в зоне действия, от которого защита должна сработать;
ICP — ток срабатывания реле для той же стороны, для которой выше был определен IP MIN.
Обычно необходимо, чтобы kЧ ≥ 2, в крайнем случае kЧ ≥ 1,5 [4].
Производится предварительный расчет тока срабатывания защиты без учета неизвестной третьей составляющей тока небаланса. Далее осуществляется предварительная (по той же причине) проверка чувствительности защиты. Если защита по чувствительности проходит, производится расчет чисел витков уравнительных обмоток, уточняется значение тока небаланса и проверяется надежность отстройки тока срабатывания защиты от уточненного значения тока небаланса. Если отстройка не обеспечена, расчет повторяется вновь для нового значения тока срабатывания, отстроенного от уточненного тока небаланса. Далее, как и для любой разновидности дифференциальной защиты, производится окончательный расчет коэффициента чувствительности и выполняется проверка трансформаторов тока на 10 %-ную погрешность.
Первая особенность связана с отсутствием необходимости учета тока небаланса при выборе тока срабатывания защиты и, соответственно, в упрощении процедуры расчета, которая для реле серии РНТ имела, возможно, рекурсивный характер.
Вторая особенность связана с необходимостью расчета числа витков тормозной обмотки и выбором места ее включения. На двухобмоточных понижающих трансформаторах тормозную обмотку включают в плечо защиты, противоположное стороне источника питания (рис. 2.28), чтобы загрубление действия реле происходило только при внешних КЗ (при повреждениях в зоне действия защиты тормозная обмотка током КЗ не обтекается). Число витков обмотки:
tgα — справочная величина, учитывающая тормозные свойства реле, для реле ДЗТ-11 tgα = 0,87.
Работа плавких предохранителей основана на тепловом действии тока. В нормальных условиях (при токе не более номинального) температура плавкой вставки предохранителя не превышает температуру плавления материала, из которого она изготовлена. При токе больше номинального в предохранителе возникает избыток тепла, температура плавкой вставки повышается и может достигнуть через определенное время значения температуры плавления. Расплавление плавкой вставки предохранителя приводит к разрыву электрической цепи, в которую он последовательно включен.
При определенных (стабильных) параметрах внешней среды предохранителя время расплавления плавкой вставки зависит от тока. Чем больше ток, тем меньше время расплавления плавкой вставки и, следовательно, полное время срабатывания предохранителя. Зависимости времени срабатывания предохранителей от тока обычно представляются в графическом виде. Их принято называть времятоковыми (защитными) характеристиками предохранителей.
Таким образом, предохранитель, включенный последовательно с контролируемой электрической цепью, обеспечивает выявление в ней повреждений, сопровождающихся повышением тока, и отключение этой цепи в случае ее повреждения (срабатывания предохранителя).
Реальные времятоковые характеристики предохранителей могут отличаться от характеристик, предоставляемых заводами-изготовителями. Так, разброс времени срабатывания предохранителей с номинальным напряжением ниже 1000 В может достигать ±50 % (рис. 2.29, а). У предохранителей с номинальным напряжением выше 1 кВ для любого времени срабатывания отклонения значений тока срабатывания не должны превышать ±20 % (рис. 2.29, б) [3].
Для обеспечения селективного действия предохранителей их согласование производится по расчетным характеристикам. Они строятся на основе заводских характеристик с учетом возможного разброса (см. рис. 2.29). Расчетные характеристики являются, по сути, границами диапазона, в котором может находиться реальная характеристика предохранителя. Условия селективного действия предохранителей должны выполняться для всего диапазона (семейства) характеристик каждого из согласуемых предохранителей.
Селективность действия защит на предохранителях достигается за счет разных значений времени срабатывания отдельных предохранителей. Первым из предохранителей, входящих в цепь питания места КЗ, срабатывает предохранитель, имеющий наименьшее время срабатывания. Он должен быть установлен ближе к месту повреждения, а время срабатывания других предохранителей должно нарастать по мере приближения к источнику питания. Таким образом, с помощью предохранителей реализуется принцип МТЗ.
Для оценки селективности и согласования защит электрической сети расчетные времятоковые характеристики предохранителей строятся в диапазоне токов от нуля до максимально возможного значения тока в каждом предохранителе. Максимально возможный ток в предохранителе — это ток при трехфазном КЗ в месте установки предохранителя в максимальном режиме электрической системы.
Например, в магистральной электрической сети с линией электропередачи W1 установлены три предохранителя F1, F2, F3 (рис. 2.30, а). Характеристика головного предохранителя F1 должна быть построена в диапазоне токов от нуля до значения тока в этом предохранителе при трехфазном КЗ в точке К1; характеристика предохранителя F2 на первом присоединении — до значения тока в этом предохранителе при трехфазном КЗ в точке К2; характеристика предохранителя F3 на втором присоединении — до значения тока в этом предохранителе при трехфазном КЗ в точке К3, как показано на рис. 2.30, б. Здесь tCP — время срабатывания предохранителя; IПP — ток в предохранителе; IНОМ F1, IНОМ F2, IНОМ F3 — номинальные токи предохранителей F1, F2, F3 соответственно; IK1, IK2, IK3 — токи в предохранителях при КЗ в точках К1, К2 и К3 соответственно.
Задача
Пусть имеется радиальная электрическая цепь с тремя предохранителями (рис. 2.31, а), в которой значения номинальных токов нагрузок Н1 и Н2 равны значениям номинальных токов предохранителей F2 и F3 соответственно. Расчетные характеристики предохранителей показаны на рис. 2.31, б (tСР — время срабатывания предохранителя; IПР — ток в предохранителе; IНОМ F2 — значение номинального тока в предохранителе F2). Требуется определить:
1. Отличаются ли значения номинальных токов предохранителей?
2. Не сработает ли какой-либо из предохранителей в нормальных режимах (при токах нагрузок не больше номинальных)?
3. Как будет работать защита предохранителями при увеличении нагрузки (по току) Н1 вдвое и при номинальной нагрузке Н2?
4. Как будет работать защита предохранителями при увеличении нагрузки (по току) Н2 вдвое и при номинальной нагрузке Н1?
5. Как будет работать защита предохранителями при увеличении нагрузок (по току) Н1 и Н2 вдвое?
6. Как будет работать защита предохранителями при КЗ в точках К1, К2, К3?
7. В каких режимах не обеспечивается селективное действие предохранителей?
8. Как добиться правильной селективной работы защиты предохранителями в рассматриваемой электрической цепи?
Решение
1. Номинальным для предохранителя является ток, при котором он может работать длительное время, а время срабатывания стремится к бесконечности. По характеристикам, показанным на рис. 2.31, а, можно предположить, что значения номинальных токов предохранителей ответвлений F2 и F3 одинаковы (хотя защитные характеристики имеют разные формы). Значение номинального тока головного предохранителя F1 больше и равно примерно утроенному значению номинального тока предохранителя F2.
Рис. 2.31. (а) Схема радиальной электрической сети.
2. В нормальных режимах токи в предохранителях F2 и F3 не превышают номинального значения и эти предохранители не сработают. Ток в головном предохранителе F1 равен сумме токов двух нагрузок, и его максимальное значение есть сумма номинальных значений токов нагрузок Н1 и Н2 (два номинальных тока предохранителя F2). При этом токе головной предохранитель F1 не сработает. Следовательно, все предохранители в нормальном режиме будут работать правильно.
Рис. 2.31. (б) Времятоковые характеристики предохранителей
3. При двукратной перегрузке по току предохранителя F2 его время срабатывания равно t2. Ток в головном предохранителе равен сумме токов нагрузок, то есть трем номинальным токам предохранителя F2 (ток в предохранителе F3 соответствует номинальному значению). Это есть номинальный ток предохранителя F1, и головной предохранитель при этом токе не сработает. Следовательно, сработает только предохранитель F2 с выдержкой времени, равной t2.Условие селективности при этом соблюдается.
4. При двукратной перегрузке по току предохранителя F3 его время срабатывания равно t3. Токи в головном предохранителе F1и в предохранителе первого присоединения F2 равны своим номинальным значениям, поэтому эти предохранители не сработают. Следовательно, сработает только предохранитель F3 с выдержкой времени, равной t3. Условие селективности при этом также соблюдается.
5. При токах нагрузок, превышающих номинальные значения вдвое, время срабатывания предохранителя F2 равно t2, а время срабатывания предохранителя F3 равно t3. В этих условиях ток в головном предохранителе соответствует четырем номинальным токам предохранителя F2. Время срабатывания предохранителя F1 при этом токе равно t1, причем t1 < t2 < t3. Следовательно, первым сработает головной предохранитель F1. Условие селективной работы защиты при этом нарушается.
6. При КЗ в точке К1 увеличивается ток только в головном предохранителе F1. Время срабатывания этого предохранителя будет зависеть от значения тока в нем и определяться времятоковой характеристикой. Срабатывание предохранителя F1 вызовет отключение нагрузок Н1 и Н2 от источника питания, а предохранители F2и F3 останутся в исходном состоянии.
Если в исходном нормальном режиме работы электрической цепи возникнет КЗ в точке К2, то возрастет ток в предохранителе первого присоединения F2 и в головном предохранителе F1. Характеристики этих предохранителей таковы, что при любых общих токах КЗ в них время срабатывания предохранителя F2 меньше времени срабатывания предохранителя F1 (см. рис. 2.31, б). Следовательно, предохранитель F2 сработает первым и селективно отделит место повреждения от исправной части электрической цепи.
Если в исходном нормальном режиме рассматриваемой электрической цепи возникнет КЗ в точке К3, то возрастет ток в предохранителе второго присоединения F3 и в головном предохранителе F1. Характеристики этих предохранителей пересекаются при значении тока, равном примерно 3,5 номинального для предохранителя F3(см. рис. 2. 31, б). При токах меньше этого значения время срабатывания предохранителя F3 меньше времени срабатывания предохранителя F1, а при токах больше этого значения время срабатывания предохранителя F3 больше времени срабатывания предохранителя F1. Следовательно, в данной ситуации при токах КЗ меньше указанного значения первым будет срабатывать предохранитель F3 и условие селективности будет соблюдаться. При токах же больше указанного значения первым сработает предохранитель F1 и оба (поврежденное и неповрежденное) присоединения потеряют питание. Здесь условие селективной работы предохранителей нарушается.
7. Селективное действие не обеспечивается в условиях, описанных в пунктах 5 и 6, то есть при токах в предохранителе F1,превышающих номинальный ток предохранителя F2 более чем в 3,5 раза.
8. Чтобы добиться селективной работы защиты предохранителями в рассматриваемой электрической цепи, необходимо, чтобы время срабатывания головного предохранителя было больше, чем время срабатывания предохранителей присоединений при всех возможных для них значениях тока. Для этого времятоковая характеристика предохранителя F1 не должна пересекать характеристик предохранителей F2 и F3, то есть должна располагаться выше этих характеристик (по оси tСР) во всем рассматриваемом диапазоне токов.
Защита от однофазных замыканий на землю может быть реализована на основе двух разных подходов [8]. Во-первых, путем общего (неселективного) контроля состояния изоляции сети относительно земли. Во-вторых, избирательно (селективно) действующими средствами, выявляющими замыкания на землю на отдельных присоединениях.
Общий контроль состояния изоляции и выявление однофазных замыканий на землю, как правило, основаны на непрерывном измерении напряжения нулевой последовательности в контролируемой электрической сети. При этом выявляется лишь факт возникновения замыкания. Но определить по напряжению нулевой последовательности, на каком из присоединений произошло повреждение, невозможно. Поэтому приходится их поочередно отключать. При отключении поврежденного присоединения напряжение нулевой последовательности в сети снижается до фонового уровня. Этот признак и используется при поиске повреждения.
В соответствии с определением симметричных составляющих напряжение нулевой последовательности представляется так:
Здесь ĖA0, ĖB0, ĖC0 — векторы э.д.с. фаз соответственно А, B, C относительно земли.
Отсюда следует, что в нормальном симметричном режиме, когда потенциал нейтрали сети равен нулю, а модули векторов ĖA0, ĖB0, ĖC0 равны соответствующим модулям векторов фазных э.д.с., напряжение нулевой последовательности в сети Ú = 0.
При замыкании фазы С на землю
Как видно, при металлическом замыкании фазы на землю модуль напряжения нулевой последовательности равен модулю фазной э.д.с. сети. Следовательно, действующее значение напряжения нулевой последовательности равно действующему значению фазного напряжения. Интегральное значение этого напряжения можно контролировать непосредственно с помощью реле, которое подключается к нейтрали сети через ТН (рис. 2.32).
Для контроля напряжения нулевой последовательности часто используется фильтр напряжения нулевой последовательности, построенный на основе трехфазного ТН, вторичные обмотки которого соединены по схеме разомкнутого треугольника (рис. 2.33) [8]. Для измерения текущих значений напряжения нулевой последовательности параллельно катушке реле напряжения KV подключается и вольтметр PV(см. рис. 2.32 и рис. 2.33).
Значение напряжения срабатывания (в масштабе первичных величин) выбирается по условию отстройки от максимально возможного напряжения нулевой последовательности, возникающего в контролируемой сети в нормальных для нее режимах:
UСЗ > U0HP MAX.
Здесь UСЗ — действующее (первичное) значение напряжения срабатывания защиты; U0HP MAX — наибольшее возможное в нормальных режимах действующее (первичное) значение напряжения нулевой последовательности в контролируемой сети.
Значение напряжения U0HP MAX определяется предельно допустимым потенциалом нейтрали (UN MAX), которое, в свою очередь, обусловлено степенью несимметрии емкостей фаз сети относительно земли:
UN MAX = (5 — 10) % UФ НОМ ,
где UФ НОМ — номинальное фазное напряжение сети.
Кроме этого, напряжение нулевой последовательности может возникать в сети как проявление замыканий на землю в смежных (внешних) сетях и погрешностей тракта измерений. В результате совместного воздействия этих двух факторов оно может составить 3–5 % UФ НОМ.
Принимая во внимание возможность появления напряжения нулевой последовательности под действием всех отмеченных факторов, как правило, выбирают:
UСЗ = 0,15UФ НОМ.
Напряжение срабатывания реле определяется с учетом коэффициента трансформации ТН (kТН):
UСР = UСЗ / kТН.
При стандартном значении максимального выходного напряжения трансформатора (фильтра) напряжения нулевой последовательности 100 В напряжение срабатывания реле равно 15 В. Это значение напряжения срабатывания иногда устанавливается без расчетов, так как оно соответствует минимально возможному напряжению срабатывания реле типа РН-53/60Д, используемого в защитах.
Время срабатывания защиты выбирается исходя из требований отстройки от действия основных (селективных) защит от однофазных замыканий на землю и может приниматься в диапазоне от 0,5 до 9 секунд.
Защиту от однофазных замыканий на землю, способную действовать селективно (автоматически выявлять поврежденное присоединение), можно выполнить по принципу контроля тока нулевой последовательности в присоединениях. Для реализации этого принципа на каждом присоединении устанавливается трансформатор (фильтр) тока нулевой последовательности (рис. 2.34), в цепь вторичной обмотки которого включается катушка реле тока (рис. 2.35).
При однофазном замыкании на землю на втором присоединении (в точке К1) ток нулевой последовательности в месте установки трансформатора ТА0-2 этого присоединения определяется суммарной емкостью исправной части сети, то есть суммарной емкостью всей сети, кроме собственной емкости поврежденного первого присоединения. Токи нулевой последовательности в местах установки других ТТ нулевой последовательности определяются только собственными емкостями присоединений, на которых установлены эти трансформаторы. Например, ток нулевой последовательности в месте установки ТА0-1 определяется емкостями первого присоединения. Если емкости отдельных присоединений примерно одинаковы и присоединений достаточно много, то ток нулевой последовательности поврежденного присоединения значительно больше, чем других, не поврежденных присоединений. Этот признак используется для автоматического выявления поврежденного присоединения. Таким образом, при возникновении однофазного замыкания на одном из присоединений срабатывает реле тока защиты, установленной на этом присоединении, и формируется сигнал на отключение именно поврежденного присоединения.
Ток срабатывания защиты выбирается по условию отстройки от собственного емкостного тока замыкания на землю контролируемого присоединения. Иными словами, ток срабатывания защиты должен быть больше собственного емкостного тока присоединения (IСПР) во всех нормальных режимах работы контролируемого присоединения и при повреждениях на смежных присоединениях:
ТСЗ > ТСПР.
Действующее значение первичного тока срабатывания защиты определяется так:
IСЗ = kЗ kБР IСПР,
где kЗ и kБР — соответственно коэффициент запаса и коэффициент отстройки от бросков емкостного тока в переходных режимах.
Значение емкостного собственного тока присоединения определяется в соответствии с п. 1.3:
Если конфигурация присоединения может изменяться (например, могут подключаться и отключаться участки кабельных линий или обмотки электрических машин), то в качестве расчетного значения емкости принимается максимально возможное значение.
При реализации защиты на электромеханической элементной базе коэффициент запаса принимается равным 1,2–1,3. Второй коэффициент kBP может иметь значения в диапазоне от 2 до 5. Меньшие значения выбираются, если защита выполняется на реле типа РТЗ-51; средние, если на РТЗ-50, и большие — если на РТ-40/0,2.
Ток срабатывания реле определяется так:
IСР = IСЗ/kТ0,
где kT0 — коэффициент трансформации ТТ нулевой последовательности.
Если расчетное значение тока срабатывания защиты меньше, чем минимально возможный ток срабатывания защиты (реле), то ток срабатывания защиты принимается равным этому технически достижимому минимальному значению.
Чувствительность защиты, установленной на присоединении с номером К, оценивается по значению коэффициента чувствительности:
kЧWK (IСW — IСWK) / IС3WK.
Здесь IСW — суммарный емкостной ток всей сети; IСWK — емкостной ток присоединения с номером К, на котором установлена защита; IС3WK — ток срабатывания защиты, установленной на присоединении К.
Некоторые данные, необходимые для выбора параметров срабатывания защит от однофазных замыканий на землю, приведены в прил. 9.
Пример
Пусть имеется электрическая сеть с шиной 10 кВ и присоединенными отходящими линиями (рис. 2.36). Параметры сети приведены в табл. 2.2. Требуется определить параметры срабатывания защит, установленных на первом и втором присоединениях.
Ток срабатывания защиты, установленной на первом присоединении (питание электродвигателя), определяется так:
IC3W1 = k3 kБР IСW1.
Принимаются следующие значения коэффициентов (для реализации на реле типа РТЗ-51 и ТТ нулевой последовательности типа ТЗЛМ): k3 = 1,2; kБР = 2,5.
Емкостной ток первого присоединения определяется суммарной емкостью кабельной линии и обмотки статора электродвигателя:
Здесь CW1 = 0,047 мкФ — емкость кабельной линии W1, значение которой получено путем умножения удельной емкости кабеля [9] на длину линии (0,2 км); См = 0,085 мкФ — емкость обмоток статора электродвигателя (табл. П9.1).
Таблица 2.2
Если в рассматриваемой электрической сети имеются крупные электродвигатели, емкости фаз которых неизвестны, то приближенное значение составляющей емкостного тока (ТСМ), определяемой обмотками электродвигателя (при внешнем замыкании на землю), можно получить с помощью эмпирических формул [5]:
IСМ ≈ 0,017 × SНМ (при номинальном напряжении 6 кВ);
IСМ ≈ 0,03 × SНМ (при номинальном напряжении 10 кВ).
Здесь SНМ = РНМ/(cos φН × ηН) — полная номинальная мощность электродвигателя (МВА); РНМ — номинальная активная мощность электродвигателя (МВт); cos φН × ηН — номинальный коэффициент мощности и номинальный к.п.д. электродвигателя соответственно.
Первичный ток срабатывания защиты:
IСЗ W1 = 1,2 × 2,5 × 0,7 = 2,1 А.
Коэффициент чувствительности защиты:
kЧW1 = (ICW − IСw1)/IСЗW1 = (27,4 — 0,7) / 2,1 = 12,7 > 1,25.
Требования по чувствительности защиты выполняются.
Ток срабатывания защиты, установленной на втором присоединении (линия магистрального типа, протяженность которой может изменяться), определяется так:
ICЗW2 kЗ kБР ICW2.
Значения коэффициентов (для реализации на реле типа РТЗ-51 и ТТ нулевой последовательности типа ТЗЛМ): kЗ = 1,2; kБР = 2,5.
Емкостной ток второго присоединения определяется суммарной емкостью отдельных участков кабельной линии:
Здесь CW2.1 = 0,17 мкФ; CW2.2 = 0,23 мкФ; CW2.3 = 0,24 мкФ — емкости отдельных участков кабельной линии W2, значения которых получены путем умножения удельной емкости кабеля на длину участка линии [9].
Тогда первичный ток срабатывания защиты:
ICЗW2 = 1,2 × 2,5 × 3,5 = 10,5 А.
Коэффициент чувствительности защиты:
kЧW2 = (ICW − ICW2) / IСЗW2 = (27,4 − 3,5) / 10,5 = 2,27 > 1,25
Требования по чувствительности выполняются.
Защита от однофазных замыканий на землю, способная действовать селективно, в электрических сетях с резистивным заземлением нейтрали может быть выполнена по принципу контроля тока нулевой последовательности в присоединениях (так же как и в сетях с изолированной нейтралью).
Методика выбора параметров срабатывания защит от однофазных замыканий на землю, устанавливаемых в сетях этого типа, определяется их особенностями.
Выбор тока срабатывания защит (так же как и защит, устанавливаемых в сетях с изолированной нейтралью) производится по условию отстройки от собственного тока присоединения при внешнем замыкании (этот ток равен емкостному току присоединения, как и в сети с изолированной нейтралью):
IСЗ > IСПР; IСЗ = kЗ kБР IСПР.
Однако значения коэффициента отстройки от бросков емкостного тока могут находиться в диапазоне от 1 до 1,5, что позволяет приблизить токи срабатывания к значениям IСПР. Это обусловлено сравнительно низким уровнем броска тока при внешних однофазных замыканиях на землю в сетях с резистивным заземлением нейтрали [5].
При низкоомном заземлении нейтрали активная составляющая тока в месте повреждения и в месте установки защиты на поврежденном присоединении значительно больше емкостной составляющей. Емкостной составляющей тока можно пренебречь и считать, что защита реагирует на активную составляющую контролируемого тока. Тогда коэффициент чувствительности защиты можно определить так:
kЧWK = IRW/IСЗWК.
Здесь IRW = Еф /RN — активная составляющая тока в месте установки защиты на поврежденном присоединении; Еф — действующее значение фазной э.д.с. сети; RN — сопротивление заземляющего резистора; IСЗWК — ток срабатывания защиты, установленной на присоединении с номером К.
Если учесть, что ток при повреждении на контролируемом присоединении в этих сетях составляет несколько десятков ампер (определяется параметрами заземляющего резистора), то можно получить значительно более высокую чувствительность защиты от однофазных замыканий на землю, чем в сетях с изолированной нейтралью.
Пример
Пусть имеется электрическая сеть 10 кВ (рис. 2.37) с резистивным заземлением нейтрали. Основные параметры сети приведены в табл. 2.3. Требуется определить параметры срабатывания защит, установленных на первом и втором присоединениях, как и в предыдущем примере.
Ток срабатывания защиты, установленной на первом присоединении (питание электродвигателя), определяется так:
IСЗW1 = kЗ kБР IСW1.
При реализации защиты на основе реле типа РТЗ-51 и ТТ нулевой последовательности типа ТЗЛМ можно принять: kЗ = 1,2;
Емкостной ток первого присоединения, определяемый суммарной емкостью кабельной линии и обмотки статора электродвигателя (табл. 2.3): IСW1 = 0,7 А.
Таблица 2.3
Первичный ток срабатывания защиты: IСЗW1 = 1,2 × 1,25 × 0,7 = = 1,05 А.
Коэффициент чувствительности защиты, установленной на первом присоединении:
kЧW1 = IRW/IСЗW1 = 57,8 / 1,05 = 55 > 1,25
Здесь IRW = ЕФ /RN = 5,78 × 103 / 100 = 57,8 А. Требования по чувствительности выполняются.
Ток срабатывания защиты, установленной на втором присоединении:
ICЗW2 = kЗ kБР ICW2.
Здесь можно принять следующие значения коэффициентов: kЗ = 1,2; kБР = 1,25. Емкостной ток второго присоединения (табл. 2.3) IСW2 = 3,5 A.
Тогда первичный ток срабатывания защиты:
IСЗW2 = 1,2 × 1,25 × 3,5 = 5,25 А.
Коэффициент чувствительности защиты:
kЧW1 = IRW /IСЗW2 = 57,8 / 5,25 = 11 > 1,25.
Требования по чувствительности выполняются. Причем, как видно, чувствительность защит в сети с резистивным заземлением нейтрали значительно выше, чем в сети с изолированной нейтралью при аналогичных параметрах.
Более двух десятилетий назад появились и начали применяться для защиты объектов энергосистем микропроцессорные устройства. За прошедший период времени была оптимизирована структура их аппаратной части, значительно улучшены эксплуатационные характеристики. Цифровые средства релейной защиты постепенно заменяют аналоговые. Этому процессу способствует ряд преимуществ, которыми обладают современные микропроцессорные устройства релейной защиты и автоматики перед устройствами, выполненными на традиционной электромеханической базе:
— выполнение самодиагностики (автоматической проверки исправности отдельных модулей и устройства в целом с индикацией состояния и блокировкой выходов устройства при его неисправности) и диагностики первичного оборудования;
— автоматическая регистрация режимов, событий и аварийных процессов, что позволяет уменьшить время на выяснение причин аварий;
— упрощение расчета уставок, увеличение их точности и точности измерений, уменьшение ступеней селективности, что снижает время действия защит и вероятность значительного повреждения оборудования;
— низкая потребляемая мощность по цепям питания и измерения (как правило, нет необходимости проверки ТТ и ТН по точности);
— возможность объединения устройств защиты и автоматики в составе автоматизированной системы управления с обеспечением дистанционного изменения уставок, удаленного контроля режима работы энергообъекта и состояния самого устройства защиты, передачи зарегистрированных аварийных процессов на рабочее место оператора (рис. 2.38);
— реализация новых функций и эксплуатационных возможностей (учет ресурса отключающей способности выключателя, хранение нескольких наборов конфигурации и уставок, восстановление формы кривой тока при насыщении ТТ и т. д.).
Немаловажным является также то обстоятельство, что обладая, как правило, незначительными габаритами, цифровое устройство реализует алгоритмы всех защит и устройств автоматики, требующихся для отдельных энергообъектов согласно действующим Правилам устройства электроустановок (ПУЭ) [12]. При этом обеспечено гибкое конфигурирование терминала защиты: в действие можно ввести только те защиты и виды автоматики, которые требуются. Возможно также подключение к терминалу внешних защит, в нем не реализованных.
Микропроцессорные устройства, комплекты и шкафы защит выпускаются как зарубежными («ABB», «Siemens», «GEC Alsthom»), так и отечественными (НТЦ «Механотроника», ЗАО «Радиус-автоматика», ОАО «ВНИИР», НЦ «Бреслер», ООО «Экра» и др.) предприятиями. Номенклатура и основные параметры некоторых отечественных цифровых средств релейной защиты приведены в прил. 10.
Вне зависимости от фирмы-производителя микропроцессорные терминалы обычно обеспечивают:
— сигнализацию срабатывания защит и автоматики, индикацию положения выключателя;
— местное и дистанционное управление выключателем;
— контроль положения выключателя и исправности его цепей управления;
— местный и дистанционный ввод уставок защит и автоматики, а также их хранение и отображение;
— двухстороннюю передачу данных между устройством защиты и системой управления (и/или компьютером) по одному из стандартных каналов связи;
— отображение измеряемых (например, фазных токов) и вычисляемых (например, тока обратной последовательности) параметров защищаемого объекта;
— учет внешних дискретных сигналов управления и блокировок при работе устройства;
— контроль работоспособности самого терминала;
— гальваническую развязку входов и выходов устройства от всех внешних цепей.
Следует учитывать, что функциональные возможности терминала (точность измерений, ввод уставок с собственного пульта или через интерфейс связи с компьютером, индикация на светодиодном или жидкокристаллическом текстовом или графическом дисплее, память событий, осциллографирование аварийных процессов, набор функций защиты и автоматики) в известной степени определяются ответственностью объекта защиты и влияют на стоимость терминала. Номенклатура производимых цифровых средств защиты и автоматики включает как простые, недорогие малогабаритные устройства (например, серия «OmegaProt» фирмы «Парма Прот»), так и сложные, функционально насыщенные устройства значительной стоимости (серия «EuroProt» той же фирмы). Некоторые производители называют свои простые микропроцессорные устройства защиты цифровыми реле, позиционируя их тем самым как недорогую замену электромеханическим реле (например, унифицированная, весьма обширная серия комплектных цифровых реле ТОР-100 ИЦ «Бреслер»).